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HYPERSONIC AERODYNAMIC CWWlCTIERISTICS OF THE 

E-F2  LIFTING ENTRY CONFIGURATION* 

By John A. Axelson and Jack A. Mellenthin 

Ames Research Center 

SUMMARY 

The hypersonic aerodynamic-characteristics of the M2-F2 l i f t i n g  en t ry  
configuration have been measured i n  t h e  Ames 3.5-Foot Q e r s o n i c  Wind Tunnel 
a t  Mach numbers of 5.2, 7.4, and 10.4 with t es t  Reynolds numbers varying 
between 0.7 and 1.6 mill ion.  Aerodynamic force and s t a t i c - s t a b i l i t y  charac- 
ter is t ics  are presented f o r  a range of angles of a t tack  from -1-5' t o  +45O, 
extending from negative l i f t  coef f ic ien ts  t o  maximum l i f t  coef f ic ien t .  

The trimmed maximum l i f t -d rag  r a t i o  was 1.30 a t  the  th ree  t es t  Mach 
numbers and occurred at  a lift coef f ic ien t  o f  0.20 near an angle of a t tack  of 
12O. The m a x i m u m  trimmed 1st coef f ic ien t  w a s  0.45 and occurred a t  an angle 
of a t tack  of 37' with a corresponding l i f t -d rag  r a t i o  of 0.8. The lower p i t ch  
f l a p  provided an e f f ec t ive  longi tudinal  trim capabi l i ty  from maximum lift t o  
zero l i f t .  The s ta t ic  margin w a s  6 percent of t h e  reference length a t  m a x i m u m  
l i f t - d r a g  r a t i o  and increased a t  t h e  higher and at  the  lower angles of a t tack .  
Di f fe ren t ia l  rudder def lec t ion  provided favorable la te ra l -d i rec t iona l  cont ro l  
charac te r i s t ics ,  and rudder f lare  w a s  very e f f ec t ive  f o r  augmenting the  other- 
w i s e  marginal d i r ec t iona l  s t a b i l i t y  and f o r  increasing t h e  r a t i o  of 
d i r ec t iona l  t o  lateral s t a b i l i t y .  

INTRODUCTION 

Analytical  s tudies ,  typ i f ied  by references 1 and 2 ,  indicated t h a t  
s ign i f i can t  reductions i n  peak heating and i n  peak decelerat ion could be 
achieved during atmosphere en t ry  through the use of a l i f t i n g  body. Favor- 
able  reductions i n  stagnation-point aerodynamic heating rate were indicated 
t o  accrue from f l y i n g  a t  high lift coeff ic ients ,  which s h i f t s  t h e  peak heating 
t o  higher a l t i t u d e s .  Trajectory s tudies  indicated an attractive la teral-range 
capabi l i ty  of 1000 naut ica l  miles ( the  approximate spacing between consecutive 
o r b i t s  a t  t h e  l a t i t udes  of t he  United States)  with a hypersonic l i f t -d rag  
r a t i o  of 1.3, and a l so  indicated t h e  need f o r  a capabi l i ty  of reducing t h e  
lift during p a r t  of t h e  entry t r a j e c t o r y  t o  avoid "skipping out" of t he  
atmosphere. 

The development of t h e  l i f t i n g  body i n i t i a l l y  designated t h e  E w a s  
reported i n  references 3 and 4 and was i n  accord with the  foregoing hypersonic 
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requirements, t h a t  is, s tab le ,  control lable  f l i g h t  over t he  wide range of 
angles of a t t ack  from zero l i f t  t o  maximum lift and a maximum l i f t -drag  r a t i o  
of 1.3 .  In  addition, t h e  s t a b i l i t y  and con t ro l l ab i l i t y  w e r e  t o  be maintained 
throughout t h e  f l i g h t  envelope down through a conventional landing capabi l i ty .  

Studies i n  support of t h e  l if t ing-body f l i g h t - t e s t  program a t  t h e  NASA 
F l igh t  Research Center led t o  th ree  modifications of the W, namely, t h e  aft 
extension of t h e  boa t t a i l ,  af t  displacement of the rudders, and replacement of 
t h e  former p a i r  of lower f l aps  by a s ingle  l a rge r  f l a p  mounted f a r t h e r  a f t .  
Intervening s tudies  of t h i s  rmdified version which i s  designated the M2-F2 m e  
reported i n  references 5, 6, and 7. 
document the updated hypersonic aerodynamic chazac ter i s t ics  f o r  the  M2-F2. 

The purpose of t he  present report  i s  t o  

NOTATION 

model span 

drag coef f ic ien t ,  
qs  

l i f t  coef f ic ien t  ,% 
ro l l i ng  moment 

qBb 
rolling-moment coef f ic ien t ,  

l a t e r a l  - s t ab il i t y  paramet e r , 2 

pitching-moment coef f ic ien t  , pitchim moment 

normal-force coef f ic ien t ,  

8C 
aP 

qsz 

qs  
awing moment 

qSb 
yawing-moment coef f ic ien t ,  Y 

d i rec t iona l - s t ab i l i t y  parameter, 3 
side-force coef f ic ien t ,  

l i f t  -to -drag r a t i o  

aP 
s ide  force 

qs 

model reference length 

free-stream Mach number 

dynamic pressure 

planform area  

angle of a t tack  

s ides l ip  angle 

control def lect ion 



t-= *: 

Subs c r ipts  

f lower p i t ch  f l a p  

r rudder 

S moments referred t o  s tabi l i ty  axes 

~ EXPERIMENT 

F a c i l i t y  and Test Conditions 

The measurements w e r e  performed i n  the Ames 3.5-Foot m e r s o n i c  Wind 
Tunnel, a blowdown type i n  which compressed air  is  heated during passage 
through a pebble-bed heater  and is then accelerated through one of several 
interchangeable nozzles leading t o  the  3.3-foot-diameter t es t  sect ion.  The 
t o t a l  temperature of t h e  air  passing through the  t e s t  sec t ion  w a s  nominally 
1900° R(-1050° K) f o r  the  three  t es t  Mach numbers of 5.2, 7.4, and 10.4. 
t o t a l  pressures were approximately 7 atmospheres a t  M = 5.2,  36 atmospheres 
a t  M = 10.4. 
numbers f o r  t h e  present model of 1-foot reference length were 0.9 mill ion a t  
M = 3.2, 1.3 mill ion a t  

The 

The t e s t  Reynolds M = 7.4,  and e i t h e r  36 or 68 atmospheres at  

M = 7.4,  and 0.7 or 1.1 million a t  M - 10.4. 

The model was  s t i n g  mounted on a hydraulically actuated, servo-controlled 
support system which was operated through an angle-of-attack range from -5' to 
+l5'. 
t h e  model w a s  t e s t ed  i n  both the  inverted and upright a t t i t u d e s  f o r  each of 
two model-sting attachments accommodating Oo or 30° model incidence. S ides l ip  
tests were perf'orrned by r o l l i n g  the  model 90' on the  s t i n g  support and t e s t i n g  
a t  0' and 30' model incidences through s ides l ip  angles from -15' t o  + 5 O .  
aerodynamic forces  and moments act ing on the model were measured with a 1-inch- 
diameter, six-component, strain-gage balance maintained a t  room temperature 
by a c i r cu la t ing  water jacket .  

In  order t o  cover a broader range of angles extending from -1.5' t o  + 4 5 O ,  

The 

I Mode 1 

The d e t a i l s  of t he  model, dimensionless with respect t o  t h e  reference 
1-foot length, are shown i n  f igu re  1. The present model is the  same 12-inch 
model reported i n  reference 3 but modified t o  t h e  m-F2 configuration by t h e  
addi t ion of the b o a t t a i l  afterbody and t h e  a l t e r a t ion  of t he  rudders and lower 
p i t ch  f l a p .  Photographs i n  figures 2 and 3 show d e t a i l s  of t he  model, includ- 
ing the  b o a t t a i l  addition, t h e  simulated f lared rudders, t he  0' and 30' inc i -  
dence mounts, and two representative canopies which were a l so  investigated.  
Further d e t a i l s  of these canopies are shown i n  figure 4. Unless otherwise 
specif ied,  t h e  aerodynamic measurements presented i n  t h i s  report  are f o r  t h e  
model without t he  canopy. 
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Precis ion 

The t e s t  Mach numbers a re  considered t o  be accurate within l imi t s  of 
50.03 a t  M = 5.2 and within CO.03 a t  
aerodynamic coeff ic ients  are considered accurate within +2 percent at  
and w i t h i n  53 percent a t  M = 7.4 and 10.4. 
are accurate within +0.2O, which uncertainty is included i n  t h e  preceding 
quoted accuracies f o r  t he  coeff ic ients .  
are accurate within 50.3'. 

M = 7.4 and 10.4. The dimensionless 
M = 3.2 

The angles of a t tack  and s i d e s l i p  

The def lec t ion  angles of the controls  

PRESENTATION OF RESULTS 

The order  of presentation of t h e  results is summarized here and i n  
t ab le  I. 
and then are discussed i n  d e t a i l  i n  the  discussion sec t ion  of t h e  report .  
Finally,  empirical equations f o r  t h e  longi tudinal  cha rac t e r i s t i c s  and numerical 
values f o r  t h e  la te ra l -d i rec t iona l  parameters are presented i n  t h e  appendix 
f o r  use i n  fu tu re  simulator s tud ies .  

The experimental results are first introduced i n  t h e i r  en t i r e ty  here 

Longitudinal Character is t ics  

The l i f t  coef f ic ien ts  , pitching moment coef f ic ien ts  , and l i f t - d r a g  r a t io s  
f o r  the basic model (canopy removed) w i t h  0' and 25' rudder f lare  are pre- 
sented i n  f igures  5, 6,  and 7 f o r  t h e  three  t e s t  Mach numbers of 5.2, 7.4, and 
10.4, respectively. 
These data ( f i g s .  5 through 8) are f o r  the model with 00 f l a p  and ident i fy  the 
m a x i m u m  trimmed angles of a t tack  and the untrimmed conditions throughout the  
lower angles of a t tack.  

The corresponding drag polars are presented i n  f igu re  8. 

Figures 9 through 12 present t h e  e f f ec t s  of pi tch-f lap def lect ion on the 
longitudinal charac te r i s t ics  and show t h e  conditions f o r  longi tudinal  t r i m .  
Included i n  f igures  6, 8(b),and 12(b) are t h e  t e s t  results f o r  t he  model w i t h  
f i n s  removed, and w i t h  both the f i n s  and the b o a t t a i l  addi t ion removed. The 
ef fec ts  of adding the  la rge  and t h e  small canopies are shown i n  f igu re  13 
f o r  M = 10.4. 
d ina l  aerodynamic charac te r i s t ics  a t  t r i m  and includes the drag due t o  lift 
f o r  t he  model longi tudinal ly  trimmed and untrimmed. 

M = 5.2 and i n  figure 14 f o r  Figure 15 swnmarizes the longitu- 

Lateral-Directional S t a b i l i t y  

The variat ions of yawing-moment and rolling-moment coef f ic ien ts  with 
s ides l ip  angle f o r  an angle of a t tack  of Oo are shown i n  figures 16, 17, and 18 
f o r  t h e  model w i t h  severa l  d i f f e ren t  rudder f lare angles, i n  f igure  19 f o r  t h e  
model with t h e  large canopy, and i n  figure 20 f o r  the model with t h e  mal l  
canopy. Two sets of yawing-moment and rolling-moment coef f ic ien ts  are shown 
f o r  the  model a t  30' angle of attack i n  f igures  21 through 28, one set  being 
referenced t o  the body axes and t h e  o ther  t o  the s t a b i l i t y  axes 
the  model wi th  severa l  rudder f lare angles comprise f igu res  21 through 26, 

Results f o r  
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while figures 27 and 28 show the  e f f ec t s  of adding t h e  canopies a t  10.4 Mach 
number. A summary of t h e  e f fec ts  of rudder f l a r e  on s t a t i c  d i r ec t iona l  and 
l a t e r a l  s t a b i l i t i e s  i s  presented i n  f igu re  29, which includes theo re t i ca l  
estimates f o r  comparison with experiment. 

Different i a l  - Rudder Characterist ics 

The yawing-moment and rolling-moment coeff ic ients  for t he  model with 
d i f f e ren t i a l ly  def lected rudders a re  presented i n  f igures  30 and 31 f o r  s ide-  
s l i p  tests a t  0' angle of a t tack  and i n  figures 32 and 33 f o r  30' angle of 
a t tack .  
throughout t h e  t es t  range of angles of attack are shown i n  f igures  34 and 35 
f o r  Mach numbers of 7.4 and 10.4, respectively.  

The yawing-moment and rolling-moment coef f ic ien ts  a t  0' s i d e s l i p  

Side-Force Coefficients 

The var ia t ions  of side-force coeff ic ient  with s i d e s l i p  angle f o r  model 

Side-force coeff ic ients  f o r  t h e  model with t h e  
angles of a t tack  of 0' and 30' and f o r  several d i f f e ren t  rudder f lare  angles 
are presented i n  f igu re  36. 
large canopy and with the  small canopy are  shown i n  f igu re  37. 

Body-Alone Lateral-Directional Character is t ics  

The yawing-moment, rolling-moment,and side-force coef f ic ien ts  f o r  the 
model with and without t h e  f i n s  and rudders a re  shown i n  f igures  38 and 39 .  

DISCUSSION 

L i f t  

The l i f t  curves f o r  t h e  model with the  f l a p  re t rac ted  were almost l i n e a r  
between angles of a t tack  of 0' and 30' ( f igs .  5(a), 6(a) ,  7 ( a ) ) .  
def lec t ion  angle of t h e  p i tch  f l a p  was increased, there  w a s  an increase i n  the  
slope of t he  lift curves corresponding t o  fixed f l a p  se t t i ngs  ( f i g s .  9, 10, 
11). 
the  same 0.011 per  degree slope as the  model with t h e  f l a p  re t rac ted  ( f i g s .  5, 

A s  t h e  

In te res t ing ly  enough, however, t h e  trimmed l i f t  curve ( f i g .  l > ( b ) )  had 

6, 7 ) .  

The highest  lift coeff ic ients  measured near 45' angle of a t tack  were 
0.45 a t  
The m a x i m u m  trimmed l i f t  coeff ic ient  varied from 0.44 at  
M = 5.2; these  values r e f l e c t  the  corresponding reduction i n  m a x i m u m  t r i m  
angle of a t t ack  from 37' t o  33'. 
and grea te r  angles of a t tack  would r e s u l t  with a reference moment center 
c loser  t o  t h e  neut ra l  point,  but t h i s  would, of course, e n t a i l  a reduction i n  
the  s t a t i c  margin.) 

M = 7 . 4  ( f i g .  6 (a ) )  and 0.48 a t  M=5.2 and 10.4 ( f i g s .  5(a) ,  7 ( a ) ) .  
M = LO .4 -to 0.42 a t  

(Somewhat higher trimmed l i f t  coef f ic ien ts  

P 5 



The angle of a t tack f o r  zero lift fo r  the untrimmed model with the f l a p  
retracted was approximately -6' ( f igs .  5 (a ) ,  6 ( a ) ,  7 ( a ) ) .  
60° produced t r i m  very close t o  zero l i f t  near 
Trimmed zero lift was not qui te  reached with the 60° f l a y  def lect ion a t  the 
two higher t e s t  Mach numbers ( f igs .  10( a ) ,  l l ( a )  ) . 

Deflecting the f l a p  
u, = -7' a t  M = 5.2 ( f ig .  9) .  

Drag 

The minimum drag coeff ic ients  f o r  the I@-F2 model with various rudder 
and f l a p  se t t ings  and with each of the two ( la rge  and small) canopies a re  as  
follows : 

Mach 
number 

5 Q  

7.4 

10.4 

Reynolds 
number, 
mill ion 

0.9 
0.9 
0.9 
0.9 
0.9 
0.9 
1.6 
1.6 
1.4 
1.4 
0.7 
0.7 
0.7 
0.7 
0.7 
0.6 

-~ 

Canopy 

Off  
Off 
O f f  
O f f  
Large 
Small 
Off 
O f f  
O f f  
O f f  
O f f  
O f f  
O f f  
O f f  
Large 
Small 

Rudder 
f l a r e ,  
deg 

0 
25 
25 
25 
25 
25 
0 

25 
25 
25 
0 

25 
25 
25 
25 
25 

0 
0 

45 
60 
60 
60 
0 
0 
45 
60 
0 
0 

45 
60 
60 
60 

he minimum drags generally occurred within 210 of 
of a t tack.  

min 

0.065 
.074 
077 
.081 
.088 
.086 
.061 
.069 
9073 
076 
.067 
072 

0 6 9  
-075 .m 
.076 

lo angle 

cD 

The var ia t ions of drag coef f ic ien t  with l ift coef f ic ien t  ( f ig .  8) were 
very nearly parabolic fo r  angles of a t tack  up t o  30' and l i f t  coeff ic ients  t o  
0.4. This parabolic re la t ionship,  previously noted f o r  the M2 shape i n  
reference 3, i s  exemplified here f o r  the E - F 2  by the almost l i n e a r  p lo t s  of 
drag coeff ic ient  versus the square of the l i f t  coef f ic ien t  as  shown i n  
f igure  l5(a). It was pointed out  e a r l i e r  that the slopes of the trimed and 
untrimmed ( t j f  = 0') l i f t  curves were approximately equal. A similar re la t ion-  
sh ip  may be noted i n  f igu re  l5(a)  which ind ica tes  surpr i s ing ly  close agreement 
between the drag due t o  l i f t  f o r  the trimmed model (symbols) and f o r  the 
untr imed model with the re t rac ted  flap (dashed l i n e s ) .  
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L i f t  -Drag Rat i o  

A l i f t i n g  entry vehicle has the advantage of achieving favorable 
redi-lct.ions i n  aerodynaiic heating r a t e  over t he  nose by f ly ing  a t  high l i f t  
coeff ic ients  during atmosphere entry ( ref .  2 ) ,  thus s h i f t i n g  t h e  peak heating 
phase t o  increased a l t i t udes .  The attainment of high l i f t  requires f l i g h t  a t  
higher angles of a t tack  and subjects the  vehicle 's  lower surface t o  grea te r  
windward exposure and increased loca l  heating r a t e s .  
however, indicates  t h a t  t h e  c r i t i c a l  heating rate on t h e  lower p i t ch  f l a p  
decreases with increasing vehicle angle of a t tack  because of t h e  reduction i n  
f l a p  s e t t i n g  required f o r  longitudinal t r i m .  

The study i n  reference 8, 

The hypersonic l i f t  charac te r i s t ics  of l i f t i n g  bodies are similar t o  
those exhibited by l i f t i n g  surfaces of very low aspect r a t i o  i n  t h a t  high 
angles of a t tack  are required t o  develop maximum lift. A s  shown by t h e  l i f t  
curves f o r  both the  untrimmed model ( f i g s .  5(a), 6(a), 7 ( a ) )  and t h e  trimmed 
model ( f i g s .  9(a), l O ( a ) ,  l l (a ) ,  l ? (b ) ) ,  achieving high l i f t  coef f ic ien ts  
requires angles of a t tack  wel l  beyond t h a t  f o r  m a x i m u m  l i f t -d rag  r a t i o .  These 
angles of a t t ack  between (L/D)mm and C h m  define t h e  so-called "backside" 
of t he  L/D curve, and here extend upward from approximately loo.  

A s  noted i n  reference 3 f o r  the  e a r l i e r  M2, t h e  present M2-F2 model a l so  
demonstrated an e s sen t i a l ly  l i nea r  reduction i n  l i f t - d r a g  r a t i o  with increas- 
ing angle of a t tack  throughout the  back side of t he  L/D curve. The m a x i m u m  
trimmed l i f t - d r a g  r a t i o  of 1 .3  a t  12' angle of a t tack  decreased t o  0.8 near 
360 angle of a t tack  ( f i g .  15(c) ) . 
objective of providing a 1000 nautical-mile la teral-range capabi l i ty ,  t h e  
approximate spacing between consecutive orbi ts  a t  t h e  l a t i t udes  of t h e  United 
S ta tes .  

The m a x i m u m  value of 1.3 meets t h e  o r ig ina l  

Longitudinal S t ab i l i t y  and Control 

The highest  trimmed angles of a t tack  f o r  t h e  E - F 2  model with t h e  f l a p  
re t rac ted  were 3 3 O  a t  M = 5 . 2  and 37' at  M=7.4  and 10.4 ( f i g .  l 5 ( d ) ) .  These 
angles were smaller than the  4 5 O  measured f o r  t h e  earlier M2 ( ref .  3) which 
had t h e  same reference moment center, but did not have the  b o a t t a i l  addi t ion.  

The p i t ch  f l a p  provided an e f fec t ive  longi tudinal  trim capabi l i ty  over 
t h e  angles of a t tack  comprising the  back side of t h e  
down t o  zero lift ( f i g s .  9, 10, 11). 
t o  achieve trimmed zero l i f t  a t  
would have been required a t  the  other  t e s t  Mach numbers. 
required f o r  t r i m  a t  (L/D)- 

L/D curve and a l so  
The 60° f l a p  def lect ion w a s  su f f i c i en t  

M=5.2, but a s l i g h t l y  grea te r  def lec t ion  
The f l a p  deflection. 

M = 10.4.  varied from 30° at  M = 5.2 t o  38' a t  

The slopes a t  t r i m  (Cm = 0) of t h e  p l o t s  of normal-force coef f ic ien t  
versus pitching-moment coeff ic ient  f o r  the severa l  d i f f e ren t  p i tch- f lap  set- 
t i ngs  ( f i g .  12) indicate  t h a t  t he  longitudinal s t a t i c  margins ( f i g .  l ? ( e ) )  
were about 6 percent of t he  reference length near m a x i m u m  l i f t - d r a g  r a t i o  
and imreased  t o  values near 8 and 10 percent a t  t h e  highest and lowest t r im - 7 



a t t i tudes  f o r  a l l  three  Mach numbers. 
untrimmed longitudinal s t a b i l i t y  increased with angle of a t tack  because of t h e  
nonlinear pitching-moment cha rac t e r i s t i c s  ( f ig .  12) .  

For any f ixed  f l a p  se t t i ng ,  t h e  

Canopy 

The most apparent e f fec t  of adding t h e  large canopy t o  t he  model w a s  t he  
s izable  reduction in  negative trim angle of a t tack  from -70 t o  -15' a t  
with the f l a p  deflected 60° ( f i g .  13(b) ) .  
angle of a t tack  w a s  only 2O at  
canopy caused a minor trim change at  
M = 10.4. 
i s t i c s  o r  on the  maximum l i f t - d r a g  r a t i o s  ( f ig s .  13(a), ( c ) ,  14(a) ,  ( c ) ) .  A s  
t he  angle of a t tack  w a s  increased, t he  canopies passed progressively in to  t h e  
leeward "shadow" of t h e  nose and exerted a diminishing influence on the  hyper- 
sonic aerodynamic charac te r i s t ics  i n  p i t ch  and i n  s ides l ip .  
the  large canopy a t  
approximately 0.0040 (appendix A )  t o  0.0037 ( f i g .  l9), but had no e f f ec t  on 
Gp a t  a = 30'. 
stab i 1 it y . 

M = 5.2  
The corresponding s h i f t  i n  trim 

M = 10.4 ( f i g .  14(b)). Adding the  s m a l l  
M = 5.2 but had a negl igible  e f f ec t  a t  

Neither canopy exerted any s ign i f i can t  e f f ec t  on t h e  l i f t  character-  

The addi t ion of 
a = Oo s l i g h t l y  decreased t h e  d i r ec t iona l  s t a b i l i t y  from 

The s m a l l  canopy did not s ign i f i can t ly  reduce d i r ec t iona l  

Lateral-Directional Reference Axes 

Lateral-directional moment charac te r i s t ics  a re  usually presented f o r  
t he  body-axis system and generally su f f i ce  f o r  s tud ies  of a i r c r a f t  i n  t he  
s m a l l  angle-of-attack range (-10') and when the  pr inc ipa l  axis is coincident 
with o r  very  near t he  body longi tudinal  axis through the  center  of gravi ty .  
(The principal  axis  is t h a t  axis about which the  minimum moment of i n e r t i a  
occurs and about which the  a i r c r a f t  tends t o  ro l l . )  The pr inc ipa l  axis of t h e  
M2-F2 configuration is  incl ined rearwardly downward with respect t o  t h e  longi- 
tudinalbody axis  by an angle of about 70 f o r  t he  present reference moment 
center  ( f ig .  1). 
reduced. Because t h i s  inc l ina t ion  angle is  reasonably small, t he  present 
experimental r e su l t s  f o r  the  body axes a re  considered representative of t he  
charac te r i s t ics  about the  pr inc ipa l  axis. The more per t inent  point i n  the  
present study is  the  very la rge  range of angles of a t tack  (approaching 40'). 
A t  t h e  previously c i t e d  m a x i m u m  trim angle of a t tack  of 370, t h e  pr inc ipa l  
axis  would be inclined 44' r e l a t ive  t o  the  wind, considerably beyond the  va l -  
ues characterizing conventional a i r c r a f t  s tudies .  To a id  i n  in te rpre t ing  t h e  
present experimental r e su l t s ,  t he  rolling-moment and yawing-moment coef f i -  
c ien ts  fo r  t he  high angles of a t tack  are shown for both the  body axes and the  
s t a b i l i t y  axes. The body-axes r e su l t s  a re  considered more meaningful f o r  
assessing l a t e r a l  control  and response, while the  s tab i l i ty -axes  r e su l t s  
should prove useful f o r  s tudies  r e l a t ing  t o  f l i g h t  or t o  a simulator where 
orientation and response a re  sensed with respect t o  the  horizon. 

For higher locations of the  center  of grav i ty  t h i s  angle i s  

8 _I___ 
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Lateral-Directional S t ab i l i t y  

The most important point v iv id ly  demonstrated i n  t h e  present p lo t s  of 
yawing-moment coef f ic ien t  versus angle of s ides l ip  ( f ig s .  16 through 20 f o r  
a = 0";  f igs .  21 t'nrough 28 f o r  
i n  increasing hypersonic d i r ec t iona l  s t a b i l i t y .  
l ever  arms of t h e  ro l l i ng  and yawing moments produced by the  rudders, rudder 
f lare had r e l a t ive ly  l i t t l e  e f f ec t  on l a t e r a l  s t a b i l i t y  as shown i n  t h e  sum- 
m a r y  p l o t  of f igure  29. Another implication of these r e su l t s  is t h a t  rudder 
f lare  increased not only the  d i r ec t iona l  s t ab i l i t y ,  but a l so  t h e  r a t i o  of 
d i r ec t iona l  t o  lateral  s t a b i l i t y ,  a parameter important i n  avoiding such 
dynamic problems as Dutch roll. 

a, = 30") i s  t h e  effect iveness  of i-udder f lare 
Because of t h e  difference i n  

Theoretical  estimates of t h e  incremental e f f ec t s  of rudder f lare  on 
d i r ec t iona l  and l a t e r a l  s t a b i l i t y  a t  an angle of a t tack  of Oo are a lso  shown 
i n  f igure  29. 
on t h e  f l a r e d  rudder surfaces , assuming the l o c a l  Mach number a t  t h e  rudder 
hinge l i n e  equal t o  t h e  free-stream Mach number. 
5.2 Mach number ( f ig s .  2g(a),  ( b ) )  where t h e  d i r ec t iona l  s t a b i l i t y  increased 
almost l i nea r ly  with rudder f lare.  
degree of nonl inear i ty  and t h e  peak stabilities measured f o r  35' rudder f lare 
a t  the  two higher Mach numbers ( f i g s .  29(c) through ( f ) ) .  
is a t t r i bu ted  t o  t h e  lack of t he  theory i n  accounting f o r  t h e  probable flow 
separation a t  the  rudder hinge l i n e  and f o r  t he  fomard  carry-over of f l a r ed -  
rudder loading on t h e  upwind f i n  surface. 

Inviscid oblique-shock theory was  used t o  estimate t h e  loadings 

There w a s  good agreement a t  

The inviscid theory underestimated t h e  

This disagreement 

Principal-Axis Incl inat ion and Lateral Control 

It was previously pointed out t ha t  by f ly ing  a t  high l i f t  coef f ic ien ts ,  

A s  t he  angle of a t t ack  and the  pr incipal-  
t he  l i f t i n g  en t ry  vehicle would encounter reduced aerodynamic heating rates 
during atmosphere en t ry  (ref.  2) . 
axis  inc l ina t ion  are increased, however, an aerodynamically s tab le  vehicle 
becomes incapable of performing pure roll maneuvers about i t s  pr inc ipa l  axis. 
To i l l u s t r a t e  t h i s  point ,  consider the  example of an abrupt 90' bank performed 
with a s tab le  vehicle f ly ing  a t  a high angle of a t t ack  (e.g. ,  the  present 
M2-F2 at i t s  maximum trim angle of a t tack  o f  3 7 O ,  r o l l i n g  about i t s  44' 
incl ined pr inc ipa l  a x i s ) .  The important p i n t  i s  t h a t  the  principal-axis 
inc l ina t ion  tends t o  convert t o  a large s idesl ip  angle as the  vehicle rolls 
toward the  90' bank angle. 
there  r e s u l t s  a concurrent buildup of l a r g e ,  res tor ing ,  ro l l i ng ,  and yawing 
moments and an  out-of - t r i m  pi tching mment. 
moments tend t o  be l a rge r  than the  actuating r o l l i n g  and yawing moments a t t a i n -  
able  with any reasonably sized aerodynamic rol l  control .  
i s  thus inh ib i ted ,  and there  results increased apparent l a t e r a l  s t a b i l i t y  of 
t h e  vehicle and excursions i n  both the angles of a t t ack  and of s ides l ip  during 
attempted rolls. This apparent dilemma inhibit ing r o l l i n g  maneuvers, par t icu-  
l a r l y  at high angles of a t tack,  may be circumvented by the  use of d i f f e r e n t i a l  
rudder def lect ion which combines augmenting s i d e s l i p  with dihedrally produced 
r o l l i n g  moments act ing i n  the  desired roll di rec t ion ,  r a the r  than oppositely 
as c i t e d  i n  the  preceding "pure r o l l "  maneuver. %he r o i l i n g  motion caused by 

With the development of the  large s ides l ip  angle, 

These counter-roll ing and -yawing 

Pure r o l l i n g  motion 
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d i f f e ren t i a l  rudders (which has been demonstrated i n  f l i g h t  and on a simulator) 
i s  not a one-degree-of-freedom r o l l  but ,  ra ther ,  involves augmenting s i d e s l i p  
through the roll and a continual change i n  the  or ien ta t ion  of the  pr inc ipa l  
axis. 
p a l  ax is  is coupled t o  t h e  s i d e s l i p  response rate (which decreases as the  
coning angle  and angle of a t tack  are increased), and t o  t h e  magnitude of t he  
augmenting ro l l i ng  moment prevai l ing a t  t he  trimmed s i d e s l i p  angle. 

This "coning" or constant angle-of-attack r o l l i n g  motion of t h e  pr inc i -  

Di f fe ren t ia l  -Rudde r Character is t ics  

The present experimental r e su l t s  f o r  d i f f  e r e n t i a l  rudders indicate  
adequate rolling-moment coef f ic ien ts  a t  s ides l ip  t r i m  f o r  00 angle of a t tack  
( C l  between 0.003 and 0.007, f ig s .  30, 31) and l a rge r  values f o r  300 angle 
of a t tack ( C z  between 0.010 and 0.017, f i g .  32; C between 0.007 and 0.010, 

2s f i g .  33). 

The combined effects of d i f f e r e n t i a l  rudder def lect ion on the  s i d e s l i p  
angle f o r t r i m  and on t h e  degree of d i rec t iona l  s t a b i l i t y  on each s ide  of t r i m  
may be observed i n  f igu re  31. A s  t h e  right-hand rudder having the  35' deflec- 
t i o n  became more windward, there  w a s  an increase i n  the  d i rec t iona l  s t a b i l i t y .  
Conversely, as the  Oo l e f t  rudder became more windward (a t  the  large negative 
s i d e s l i p  angles),  there  w a s  a decrease i n  the  d i rec t iona l  s t a b i l i t y .  Thus the  
different  slopes of t he  curves indicate  d i f f e ren t  leve ls  of s t a b i l i t y  on oppo- 
s i t e  sides of t h e  t r i m  points i n  s ides l ip  ( f i g .  31) similar t o  t h e  previously 
c i t e d  differences i n  longi tudinal  s t a b i l i t y  on opposite s ides  of t h e  t r i m  
angle of attack ( f i g .  12) .  

The la te ra l -d i rec t iona l  moment charac te r i s t ics  i n  s i d e s l i p  ( f ig s .  30 
througg 33) indicate  adequate rudder effectiveness a t  angles of a t tack  of 0' 
and 30 . The l a t e ra l -d i r ec t iona l  charac te r i s t ics  measured i n  p i t ch  ( f i g s .  34, 
35) indicate rudder effectiveness a t  a l l  angles of a t tack  t e s t ed ,  but  w i t h  
reduced effectiveness around a = 5' 
imer sed  in  t h e  body boundary layer.  
about the  body axis i n  these measurements a t  
replaced by an augmenting ro l l i ng  moment as t h e  vehicle  sought i t s  trimmed 
s i d e s l i p  angle (where 

where the  rudders were p a r t i a l l y  
There w a s  a small adverse r o l l i n g  moment 

p = 0 , but t h i s  moment would be 0 

Cn = 0) .  

Side-Force Coefficients 

The only  noteworthy fea tures  of t h e  side-force coef f ic ien ts  were t h e  
increased values accompanying increased rudder f la re  angle ( f i g .  36) and 
increased angle of a t tack  ( appendix A) .  

Character is t ics  of Body Alone 

The aerodynamic charac te r i s t ics  measured f o r  t h e  E - F 2  body (including 
t h e  boa t ta i l  addi t ion)  ind ica te  t h a t  removing t h e  f i n s  and rudders had l i t t l e  
e f f ec t  on t he  longi tudinal  force  cha rac t e r i s t i c s  ( f i g .  6 )  and on the  l a t e r a l -  
moment and side-force charac te r i s t ics  ( f i g s .  38, 39). The pr inc ipa l  e f f ec t s  
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of removing the  f i n s  and rudders were t o  a l t e r  t h e  longi tudinal  character is-  
t i c s  a t  negative angles of a t tack  ( f i g .  6 )  and t o  render neut ra l  d i r ec t iona l  
s t a b i l i t y  about t he  body axes ( f ig .  38(a)).  Removal of t h e  f i n s  and rudders 
did not s ign i f i can t ly  change the  rolling-moment cha rac t e r i s t i c s  ( f i g s .  38(b) ,  
39(b) ) ,  because t h e  l a t e r a l  s t a b i l i t y  i s  derived primarily from t h e  body 
pressure forces  act ing normal t o  the  conical surface and converging t o  t he  
body half-cone center l ine ,  which is above the reference moment center  ( f i g .  1). 

CONCLUSIONS 

The following hypersonic aerodynamic charac te r i s t ics  were indicated f o r  
t h e  W-F2 l i f t i n g  entry configuration a t  the th ree  t es t  Mach numbers of 5.2, 
7.4, and 10.4: 

1. A trimmed, m a x i m u m  l i f t - d r a g  r a t i o  of  1 .3  near 12O angle of a t tack  a t  
a l i f t  coef f ic ien t  near  0.20, 

2. A trimmed m a x i m u m  lift coeff ic ient  near 0.45 with a corresponding 
l i f t - d r a g  r a t i o  of 0.8, 

3 .  A longi tudinal  trim capabi l i ty  from zero l i f t  t o  m a x i m u m  l i f t  using 
the  lower p i t c h  f l ap ,  

4. 
i n  t h e  v i c i n i t y  of (L/D)max; g rea te r  margins a t  lower and higher angles of 
attack, 

A longi tudinal  s ta t ic  margin near 6 percent of t he  reference length 

5. Adequate lateral  and d i r ec t iona l  s t a b i l i t y  including e f f ec t ive  
control  of t h e  l e v e l  of d i rec t iona l  s t a b i l i t y  and of t h e  r a t i o  of d i r ec t iona l  
t o  lateral  s t a b i l i t y  by t h e  use of rudder f la re ,  

6. Adequate l a t e ra l -d i r ec t iona l  control through the  use of d i f f e r e n t i a l  
rudder def lect ion.  

Ames Research Center 
National Aeronautics and Space Administration 

Moffett F ie ld ,  C a l i f .  , 94035, June 3, 1968 
124 -07 - 02 -22 - 00 - 21 
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EMPIRICAL MINGI'IZTDINAL AND TABULATED DIRECTIONAL CHARACmISTICS 

Bnpirical equations f o r  the longitudinal aerodynamic parameters of the  
M2 were presented i n  reference 3 t o  assist computer and simulator s tudies .  
The following equations update these relat ions t o  f i t  t he  current M2-F2 
results within 23 percent. 

CL = 0.060 + 0.011~ 
t r i m  CL = 0.075 + 0.0llcL 

(f ixed f l a p  se t t i ng ;  Oo s a 5 30°) 

(varying f l a p  se t t i ng ;  0' g a 30') 

C, = 0 . 6 5  + 2.30 C L ~  (0' s a s 30') 

L/D = 0.80 + 0.021 (36 - a) (ioo g a 4 5 O )  

Values for the  aerodynamic parameters i n  s ides l ip  for the  model without 
canopy and with 25' rudder f l a r e  are  : 

12 

a 

30° 

1 

M = 5.2 

0 .OO40 

- .0022 

- .ole8 
-0035 

- .0030 

- .0180 

.0045 

- ,0009 

M = 7.4 

0 * 0039 
- .0020 

- .0123 
.0031 

- .a130 

- .O184 

.0042 

- .0011 

M = 10.4 

0.0041 

- .0018 

.0030 

- .0124 

- .0030 

- .0195 

.0043 

- .0013 
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TABLF: I.- DATA SUMMARY 

Flap 
Figure Parameter M s e t t i n g  

deg 

CL vs. a 
vs. a 

L/D VS. a 

Rudder 
f l a r e  Canopy Additional 
deg 

CT vs .  a 

Flap 
Figure Parameter M s e t t i n g  

deg 

u cm vs .  a 
L/D v s .  a 

Rudder 
f l a r e  Canopy Additional 
deg 

5.2 

7.4 

CL vs .  a 
G V S .  a 
L/D v s .  a 

CL vs .  a 
h v s .  a 
L/D v s .  a 

CL vs .  a 
G v s .  a 
L/D v s .  a 

CL vs .  a 
G v s .  a 
L/D VS.  a 

CL v s .  a 
h v s .  a 
L/D v s .  a 

CL vs .  a 
G v s .  a 
L/D vs .  a 

c v s .  a 
CD vs .  CL' 

~b vs. a 

10.4 

5.2 
7.4 

10.4 

5 -2 

7.4 

10.4 

5 - 2  
7.4 

10.4 

5.2 

10.4 

5.2Y7.4, 
10.4 

0 

0 

0 

0 

60 

60 

O f f  

O f f  

Off 

Off 

O f f  

O f f  

O f f  

O f f  

Large & 
s m a l l  

Large & 
s m a l l  

O f f  

Body includei 

Body included 

Body includec 

Trimmed 



..v 
TABLE I.- DATA SUMMARY - Continued 

Flap Rudder 

deg deg 
'igure Parameter M a se t t i ng ,  flare, canopy 

3l-direct  
5- 2 

7.4 

10.4 

5.2Y7.4, 

5.277.4, 

10.4 

10.4 

5 -2  

5 *2  

7.4 

7 - 4  

10.4 

10.4 

10.4 

10.4 

I 
~~ ~~ 

n a l  aerod) 
0 

0 

0 

0 

0 

30 

30 

30 

30 

30 

30 

30 

30 

60 

60 

60 

60 

60 

15 

15 

15 

15 

0 

0 

35 

35 

off 

O f f  

O f f  

Large 

Small 

O f f  

O f f  

O f f  

O f f  

O f f  

O f f  

Large & 
s m a l l  

Large & 
s m a l l  
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TABLE I.- DATA SUMMARY - Continued 

Flap Rudder 
Figure Parameter M a s e t t i n g  f lare 

deg deg 
Canopy 

16 

. -  
D i r .  Stab. 
L a t .  Stab. 
D i r .  Stab. 
L a t .  Stab. 
D i r .  Stab. 
L a t .  Stab. 

c n v s -  P 
cz vs.  p 

cn vs. p 
cz vs. p 

c , v s -  P 
cz vs. p 

Cns VS- P 
czs vs. P 

% 3 C n s  vs. a 
21 ,Czs  v s .  a 

Cn3G3.s vS. a 
Cz,Czs  vs. a 

c , v s .  P 

cy VS. P 

5.2 

7.4 

10.4 

5.237.43 

5.2J7.43 

5.2,7.4, 

5 a 7 . 4 ,  

7.4 

10.4 

10.4 

10.4 

10.4 

10.4 

5 -2  

7.4 

10.4 

5 4 7 . 4 ,  

5 a 7 . 4 ,  
10.4 

10.4 
10.4 

onal aerd ;  
0330 

0,30 

0330 

0 

0 

30 

30 

Variable 

Variable 

0 
30 
0 

30 
0 

30 

0 

0 

30 

0,153 
25335 
0315, 
25335 
0,153 
25335 

Left 15, 
r igh t  35 

L e f t  0, 
r i gh t  35 

Left  15, 

Left  15, 

Left  15, 

r igh t  35 

r igh t  35 

r igh t  35 

Left 15, 
r i gh t  35 

0 >25 , 35 
0 9 5  
0315, 
25 335 

25 

Off 

Off 

Off 

O f f  

Off 

O f f  

Off 

Off 

Off 

O f f  

Large 

Small 

Large & 
small 
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TABLE I. - DATA SUMMARY - Concluded 

Figure Parameter M a. setting, flare, 
deg deg 

pq-q- cy vs. 
10.4 0 

10.4 30 

60,o o on & off 

0 0 on & off 

Canopy 

Off 

Off 
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A-36842 
(a) small canopy. 

A-36843 

(b)  Large canopy. 

Figure 2.-  Side views of the W-F2 model with the large and small canopies. 
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A-36839 (a) 0' incidence mount. 

(b)  30' incidence mount. 

Figure 3.- Rear views of the M2-F2 model. 

A-36841 
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(b) Large canopy. 

Figure 4. - Canopy details. 
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(b)  Trimmed l i f t  coef f ic ien t  
versus angle of a t tack .  
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versus angle of a t tack .  

( e )  S t a t i c  margin versus 
angle of a t tack .  

Figure 15.- Concluded. 
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(a) Yawing-moment coef f ic ien t .  

Figure 16.- Effects of rudder flare on t h e  lateral-directionalmoment 
cha rac t e r i s t i c s  of t h e  W-F2 model i n  s ides l ip ;  M = 5.2,  a = Oo, 
6f = 60'. - 39 



(a) Yawing-moment coefficient. 

(b) Rolling-moment coefficient. 

Figure 17.- Effects of rudder flare on the lateral-directional moment 
characteristics of the M2-F2 model in sideslip; M = 7.4, CL = 0 , 0 

sf = 60°. 
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(a) Yawing-moment coefficient. 
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(b) Rolling-moment coefficient. 

Figure 18.- Effects of rudder flare on the lateral-directional moment 
characteristics of the M2-F2 model in sideslip; M = 10.4, a = Oo, 
Ff = 60°. 
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(a) Yawing -moment coefficient . 
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(b) Rolling-moment coefficient. 

Figure 19. -  Lateral-directional moment characteristics 0 for the W-F2 model with 
the large canopy; 25' rudder flare, CL = 0 , 6f = 60'. 
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CZ 

Figure 

(a) Yawing-moment coefficient. 

(b) Rolling-moment coefficient. 

20.- Lateral-directional moment characteristics for the M2-F2 model with 
0 the small canopy; 25' rudder flare, a = 0 , 6f = 60°. - 43 
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(Q,) Yawing-moment coefficient. 

(b) Rolling-moment coefficient. 

Figure 21.- Effects of rudder flare on the lateral-directional moment 
characteristics of the M2-F2 model in sideslip; M = 5.2 ,  a = 30°, 
6f = 15'; body axes. 
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(a) Yawing-moment coefficient. 

(b) Rolling-moment coefficient. 

Figure 22.- Effects of rudder flare on the lateral-directional moment 
characteristics of the M2-F2 model in sideslip; M = 5.2, CL = 30°, 
6f = 15'; stability axes. 
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(a) Yawing-moment coefficient. 

P ,  deg 

(b) Rolling-moment coef. icient . 
Figure 23.- Effects of rudder flare on the ;Lteral-directional moment 

characteristics of the M2-F2 model in sideslip; M = 7.4, a = 30°, 
6f = 15O; body axes. 
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(a) Yawing-moment coefficient. 

(b) Rolling-moment coefficient. 

Figure 24.- Effects of rudder flare on the lateral-directional moment 
characteristics of the M.2-F2 model in sideslip; M = 7.4, a = 30°, 
6f = 15'; stability axes. 
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(a) Yawing-moment coefficient. 

(b) Rolling-moment coefficient. 

Figure 25.- Effects of rudder flare on the lateral-directional moment 
characteristics of the E-F2 model in sideslip; M = 10.4, a, = 30°, 
6f = 0'; body axes. 



(a) Yawing-moment coefficient. 

(b) Rolling-moment coefficient. 

Figure 26.- Effects of rudder flare on the lateral-directional moment 
characteristics of the M2-F2 model in sideslip; M = 10.4, a = 30°, 
Sf = 0'; stability axes. 
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(a) Yawing-moment coefficient. 

- .~ ~~ 

(b) Rolling-moment coefficient. 

Figure 27.- Effects of canopy addition on the lateral-directional moment 
characteristics for the W-F2 model; M = 10.4, a = 30°, Ff = 3 5 O J  
2 5 O  rudder flare; body axes. 



(a) Yawing-moment coefficient. 

(b) Rolling-moment coefficient. 

Figure 28.- Effects of canopy addition on the lateral-directional moment 
characterisitics for the M2-F2 model; M = 10.4, a = 30°, Ff = ?I?', 
25' rudder flare; stability axes. - 



(a) Directional s t a b i l i t y ,  M = 5 .2 .  

Rudder flare, deg 

( b )  La tera l  s t a b i l i t y ,  M = 5.2.  

Figure 29.- Effects  of rudder f l a r e  on d i r ec t iona l  and l a t e r a l  s t a b i l i t y .  
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( c )  Directional s t ab i l i t y ,  M = 7.4. 

Rudder flare, deg 

(a) Lateral  s t ab i l i t y ,  M = 7.4. 

Figure 29. - Continued. 
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(e) Directional stability, M = 10.4. 
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(a) Yawing-moment coefficient. 

(b) Rolling-moment coefficient. 

Figure 30.- Yawing-moment and rolling-moment coefficients for the W-F2 model 
- T r O  

with 20' differential rudder deflection; &left = 150, Gr,ight - 3) 9 
CL = oo, Ef = 60°. 



(b) Rolling-moment coefficient. 

Figure 31.- Yawing-moment and rolling-moment coefficients for the M2-F2 model 
= 35O, with 35' differential rudder deflection; ',left - 0'9 bright - 

= oo, sf = 60°. 



(a) Yawing-moment coeff ic ient .  

(b) Rolling-moment coeff ic ient .  

Figure 32.- Yawing-moment and rolling-moment coef f ic ien ts  for t h e  M2-F2 
= 3 3 O ,  - with 20' d i f f e r e n t i a l  rudder deflection; 6rleft - 130> 6ry;ght 

a = 30'; body axes. 

model 
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(a) Yawing-moment coefficient. 

(b) Rolling-moment coefficient. 

Figure 33.- Yawing-moment and rolling-moment coefficients for the W-F2 model 
with 20' differential rudder deflection; Grleft = 15', 8rright = 35', 
a = 30°; stability axes. 



(a) Yawing-moment coefficient. 

a ,  deq 

(b) Rolling-moment coefficient. 

Figure 34.- Differential rttdder characteristics for the W-F2 model in pitch; 
P = O', Erleft = u', Br,ight = 33', M = 7.4. 
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(a) Yawing-moment coefficient. 

(b) Rolling-moment coefficient. 

Figure 35.- Differential rudder characteristics for the M2-F2 model in pitch; 
B = 0 > bleft - - 150, = 3 5 O ,  M = 10.4. 0 

60 - 



.03 

.02 

.o I 
CY 

0 

-.o I 

-.02 

~ (a) M = 5.2,  a = Oo, 6f = 60° 

(b)  M = 5 .2 ,  a = 30°, 6f = 15' 

Figure 36. - Variations of side-force coefficient with sideslip angle f o r  the 
M2-F2 model with several different rudder-flare angles at angles of 
attack of Oo and 30°. 
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( c )  M = 7.4, CL = Oo, 6f = 60° 

CY 

0 (a)  M = 7.4, CL = 30°, 6f = 15 

Figure 36. - Continued. 
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(f) M = 10.4, CI = 30°, Ff = Oo 

Figure 36. - Concluded. 
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0 (a) Large canopy, a = 0 , 6f = 60'. 

CY 

(b) Small  canopy, a = Oo, 8f = 60'. 

(c) M = 10.4, a = 30°, 6f = 33' 

Figure 37.- Side-force coefficients f o r  the W-F2 model with and without the 
canopy. 

64 - 



.02 

.01 

Cn O 

-.01 

-.02 

(a) Yawing-moment coefficient. 
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(b) Rolling-moment coefficient . 
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( c )  Side-force coefficient. 

Figure 38.- Characteristics in sideslip of the M2-F2 body with and without fins; 
M = 10.4, a = 0'. 
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(a) Yawing-moment coefficient. 

(b) Rolling-moment coefficient. 
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(c) Side-force coefficient. 

Figure 39.- Characteristics in sideslip of the M2-F2 body with and without fins; 
M = 10.4, a = 30°, Ef = oo. 
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